3.3.93 \(\int \frac {x (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{d+e x} \, dx\)

Optimal. Leaf size=381 \[ \frac {\left (5 a e^2+7 c d^2\right ) \left (c d^2-a e^2\right )^5 \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{1024 c^{7/2} d^{7/2} e^{9/2}}-\frac {\left (5 a e^2+7 c d^2\right ) \left (c d^2-a e^2\right )^3 \left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{512 c^3 d^3 e^4}+\frac {\left (5 a e^2+7 c d^2\right ) \left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{192 c^2 d^2 e^3}+\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{6 c d e (d+e x)}-\frac {1}{60} \left (\frac {5 a}{c d}+\frac {7 d}{e^2}\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 381, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {794, 664, 612, 621, 206} \begin {gather*} -\frac {\left (5 a e^2+7 c d^2\right ) \left (c d^2-a e^2\right )^3 \left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{512 c^3 d^3 e^4}+\frac {\left (5 a e^2+7 c d^2\right ) \left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{192 c^2 d^2 e^3}+\frac {\left (5 a e^2+7 c d^2\right ) \left (c d^2-a e^2\right )^5 \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{1024 c^{7/2} d^{7/2} e^{9/2}}+\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{6 c d e (d+e x)}-\frac {1}{60} \left (\frac {5 a}{c d}+\frac {7 d}{e^2}\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x),x]

[Out]

-((c*d^2 - a*e^2)^3*(7*c*d^2 + 5*a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2
])/(512*c^3*d^3*e^4) + ((c*d^2 - a*e^2)*(7*c*d^2 + 5*a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*(a*d*e + (c*d^2 + a*e^
2)*x + c*d*e*x^2)^(3/2))/(192*c^2*d^2*e^3) - (((5*a)/(c*d) + (7*d)/e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2
)^(5/2))/60 + (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2)/(6*c*d*e*(d + e*x)) + ((c*d^2 - a*e^2)^5*(7*c*d^2
+ 5*a*e^2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d
*e*x^2])])/(1024*c^(7/2)*d^(7/2)*e^(9/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[(p*(2*c*d - b*e))/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rubi steps

\begin {align*} \int \frac {x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{d+e x} \, dx &=\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{6 c d e (d+e x)}+\frac {1}{12} \left (-\frac {7 d}{e}-\frac {5 a e}{c d}\right ) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{d+e x} \, dx\\ &=-\frac {1}{60} \left (\frac {5 a}{c d}+\frac {7 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{6 c d e (d+e x)}+\frac {\left (\left (\frac {7 d}{e}+\frac {5 a e}{c d}\right ) \left (c d^2-a e^2\right )\right ) \int \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2} \, dx}{24 e}\\ &=\frac {\left (c d^2-a e^2\right ) \left (7 c d^2+5 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{192 c^2 d^2 e^3}-\frac {1}{60} \left (\frac {5 a}{c d}+\frac {7 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{6 c d e (d+e x)}-\frac {\left (\left (c d^2-a e^2\right )^3 \left (7 c d^2+5 a e^2\right )\right ) \int \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{128 c^2 d^2 e^3}\\ &=-\frac {\left (c d^2-a e^2\right )^3 \left (7 c d^2+5 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{512 c^3 d^3 e^4}+\frac {\left (c d^2-a e^2\right ) \left (7 c d^2+5 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{192 c^2 d^2 e^3}-\frac {1}{60} \left (\frac {5 a}{c d}+\frac {7 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{6 c d e (d+e x)}+\frac {\left (\left (c d^2-a e^2\right )^5 \left (7 c d^2+5 a e^2\right )\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{1024 c^3 d^3 e^4}\\ &=-\frac {\left (c d^2-a e^2\right )^3 \left (7 c d^2+5 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{512 c^3 d^3 e^4}+\frac {\left (c d^2-a e^2\right ) \left (7 c d^2+5 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{192 c^2 d^2 e^3}-\frac {1}{60} \left (\frac {5 a}{c d}+\frac {7 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{6 c d e (d+e x)}+\frac {\left (\left (c d^2-a e^2\right )^5 \left (7 c d^2+5 a e^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{512 c^3 d^3 e^4}\\ &=-\frac {\left (c d^2-a e^2\right )^3 \left (7 c d^2+5 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{512 c^3 d^3 e^4}+\frac {\left (c d^2-a e^2\right ) \left (7 c d^2+5 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{192 c^2 d^2 e^3}-\frac {1}{60} \left (\frac {5 a}{c d}+\frac {7 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{6 c d e (d+e x)}+\frac {\left (c d^2-a e^2\right )^5 \left (7 c d^2+5 a e^2\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{1024 c^{7/2} d^{7/2} e^{9/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.74, size = 506, normalized size = 1.33 \begin {gather*} \frac {(a e+c d x) ((d+e x) (a e+c d x))^{5/2} \left (7-\frac {7 \sqrt {c d} \sqrt {c d^2-a e^2} \left (5 a e^2+7 c d^2\right ) \left (\frac {c d (d+e x)}{c d^2-a e^2}\right )^{3/2} \left (15 \sqrt {e} \sqrt {c d} \left (c d^2-a e^2\right )^{11/2} (a e+c d x) \sqrt {\frac {c d (d+e x)}{c d^2-a e^2}}-15 \sqrt {c} \sqrt {d} \left (c d^2-a e^2\right )^6 \sqrt {a e+c d x} \sinh ^{-1}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d} \sqrt {c d^2-a e^2}}\right )-10 e^{3/2} \sqrt {c d} \left (c d^2-a e^2\right )^{9/2} (a e+c d x)^2 \sqrt {\frac {c d (d+e x)}{c d^2-a e^2}}+8 e^{5/2} \sqrt {c d} \left (c d^2-a e^2\right )^{7/2} (a e+c d x)^3 \sqrt {\frac {c d (d+e x)}{c d^2-a e^2}}+16 e^{7/2} \sqrt {c d} \left (c d^2-a e^2\right )^{3/2} (a e+c d x)^4 \sqrt {\frac {c d (d+e x)}{c d^2-a e^2}} \left (c d (11 d+8 e x)-3 a e^2\right )\right )}{1280 c^5 d^5 e^{7/2} (d+e x)^4 (a e+c d x)^4}\right )}{42 c d e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x),x]

[Out]

((a*e + c*d*x)*((a*e + c*d*x)*(d + e*x))^(5/2)*(7 - (7*Sqrt[c*d]*Sqrt[c*d^2 - a*e^2]*(7*c*d^2 + 5*a*e^2)*((c*d
*(d + e*x))/(c*d^2 - a*e^2))^(3/2)*(15*Sqrt[c*d]*Sqrt[e]*(c*d^2 - a*e^2)^(11/2)*(a*e + c*d*x)*Sqrt[(c*d*(d + e
*x))/(c*d^2 - a*e^2)] - 10*Sqrt[c*d]*e^(3/2)*(c*d^2 - a*e^2)^(9/2)*(a*e + c*d*x)^2*Sqrt[(c*d*(d + e*x))/(c*d^2
 - a*e^2)] + 8*Sqrt[c*d]*e^(5/2)*(c*d^2 - a*e^2)^(7/2)*(a*e + c*d*x)^3*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)] +
 16*Sqrt[c*d]*e^(7/2)*(c*d^2 - a*e^2)^(3/2)*(a*e + c*d*x)^4*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)]*(-3*a*e^2 +
c*d*(11*d + 8*e*x)) - 15*Sqrt[c]*Sqrt[d]*(c*d^2 - a*e^2)^6*Sqrt[a*e + c*d*x]*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*
Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])]))/(1280*c^5*d^5*e^(7/2)*(a*e + c*d*x)^4*(d + e*x)^4)))/(42
*c*d*e)

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 180.02, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(x*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 1046, normalized size = 2.75 \begin {gather*} \left [-\frac {15 \, {\left (7 \, c^{6} d^{12} - 30 \, a c^{5} d^{10} e^{2} + 45 \, a^{2} c^{4} d^{8} e^{4} - 20 \, a^{3} c^{3} d^{6} e^{6} - 15 \, a^{4} c^{2} d^{4} e^{8} + 18 \, a^{5} c d^{2} e^{10} - 5 \, a^{6} e^{12}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \, {\left (1280 \, c^{6} d^{6} e^{6} x^{5} - 105 \, c^{6} d^{11} e + 415 \, a c^{5} d^{9} e^{3} - 546 \, a^{2} c^{4} d^{7} e^{5} + 150 \, a^{3} c^{3} d^{5} e^{7} - 245 \, a^{4} c^{2} d^{3} e^{9} + 75 \, a^{5} c d e^{11} + 128 \, {\left (13 \, c^{6} d^{7} e^{5} + 25 \, a c^{5} d^{5} e^{7}\right )} x^{4} + 16 \, {\left (3 \, c^{6} d^{8} e^{4} + 278 \, a c^{5} d^{6} e^{6} + 135 \, a^{2} c^{4} d^{4} e^{8}\right )} x^{3} - 8 \, {\left (7 \, c^{6} d^{9} e^{3} - 27 \, a c^{5} d^{7} e^{5} - 423 \, a^{2} c^{4} d^{5} e^{7} - 5 \, a^{3} c^{3} d^{3} e^{9}\right )} x^{2} + 2 \, {\left (35 \, c^{6} d^{10} e^{2} - 136 \, a c^{5} d^{8} e^{4} + 174 \, a^{2} c^{4} d^{6} e^{6} + 80 \, a^{3} c^{3} d^{4} e^{8} - 25 \, a^{4} c^{2} d^{2} e^{10}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{30720 \, c^{4} d^{4} e^{5}}, -\frac {15 \, {\left (7 \, c^{6} d^{12} - 30 \, a c^{5} d^{10} e^{2} + 45 \, a^{2} c^{4} d^{8} e^{4} - 20 \, a^{3} c^{3} d^{6} e^{6} - 15 \, a^{4} c^{2} d^{4} e^{8} + 18 \, a^{5} c d^{2} e^{10} - 5 \, a^{6} e^{12}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) - 2 \, {\left (1280 \, c^{6} d^{6} e^{6} x^{5} - 105 \, c^{6} d^{11} e + 415 \, a c^{5} d^{9} e^{3} - 546 \, a^{2} c^{4} d^{7} e^{5} + 150 \, a^{3} c^{3} d^{5} e^{7} - 245 \, a^{4} c^{2} d^{3} e^{9} + 75 \, a^{5} c d e^{11} + 128 \, {\left (13 \, c^{6} d^{7} e^{5} + 25 \, a c^{5} d^{5} e^{7}\right )} x^{4} + 16 \, {\left (3 \, c^{6} d^{8} e^{4} + 278 \, a c^{5} d^{6} e^{6} + 135 \, a^{2} c^{4} d^{4} e^{8}\right )} x^{3} - 8 \, {\left (7 \, c^{6} d^{9} e^{3} - 27 \, a c^{5} d^{7} e^{5} - 423 \, a^{2} c^{4} d^{5} e^{7} - 5 \, a^{3} c^{3} d^{3} e^{9}\right )} x^{2} + 2 \, {\left (35 \, c^{6} d^{10} e^{2} - 136 \, a c^{5} d^{8} e^{4} + 174 \, a^{2} c^{4} d^{6} e^{6} + 80 \, a^{3} c^{3} d^{4} e^{8} - 25 \, a^{4} c^{2} d^{2} e^{10}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{15360 \, c^{4} d^{4} e^{5}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d),x, algorithm="fricas")

[Out]

[-1/30720*(15*(7*c^6*d^12 - 30*a*c^5*d^10*e^2 + 45*a^2*c^4*d^8*e^4 - 20*a^3*c^3*d^6*e^6 - 15*a^4*c^2*d^4*e^8 +
 18*a^5*c*d^2*e^10 - 5*a^6*e^12)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 - 4*sqr
t(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x
) - 4*(1280*c^6*d^6*e^6*x^5 - 105*c^6*d^11*e + 415*a*c^5*d^9*e^3 - 546*a^2*c^4*d^7*e^5 + 150*a^3*c^3*d^5*e^7 -
 245*a^4*c^2*d^3*e^9 + 75*a^5*c*d*e^11 + 128*(13*c^6*d^7*e^5 + 25*a*c^5*d^5*e^7)*x^4 + 16*(3*c^6*d^8*e^4 + 278
*a*c^5*d^6*e^6 + 135*a^2*c^4*d^4*e^8)*x^3 - 8*(7*c^6*d^9*e^3 - 27*a*c^5*d^7*e^5 - 423*a^2*c^4*d^5*e^7 - 5*a^3*
c^3*d^3*e^9)*x^2 + 2*(35*c^6*d^10*e^2 - 136*a*c^5*d^8*e^4 + 174*a^2*c^4*d^6*e^6 + 80*a^3*c^3*d^4*e^8 - 25*a^4*
c^2*d^2*e^10)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^4*d^4*e^5), -1/15360*(15*(7*c^6*d^12 - 30*a*c
^5*d^10*e^2 + 45*a^2*c^4*d^8*e^4 - 20*a^3*c^3*d^6*e^6 - 15*a^4*c^2*d^4*e^8 + 18*a^5*c*d^2*e^10 - 5*a^6*e^12)*s
qrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c
^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) - 2*(1280*c^6*d^6*e^6*x^5 - 105*c^6*d^11*e + 415*a*
c^5*d^9*e^3 - 546*a^2*c^4*d^7*e^5 + 150*a^3*c^3*d^5*e^7 - 245*a^4*c^2*d^3*e^9 + 75*a^5*c*d*e^11 + 128*(13*c^6*
d^7*e^5 + 25*a*c^5*d^5*e^7)*x^4 + 16*(3*c^6*d^8*e^4 + 278*a*c^5*d^6*e^6 + 135*a^2*c^4*d^4*e^8)*x^3 - 8*(7*c^6*
d^9*e^3 - 27*a*c^5*d^7*e^5 - 423*a^2*c^4*d^5*e^7 - 5*a^3*c^3*d^3*e^9)*x^2 + 2*(35*c^6*d^10*e^2 - 136*a*c^5*d^8
*e^4 + 174*a^2*c^4*d^6*e^6 + 80*a^3*c^3*d^4*e^8 - 25*a^4*c^2*d^2*e^10)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*
e^2)*x))/(c^4*d^4*e^5)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a sub
stitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should perha
ps be purged.Warning, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing
 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution vari
able should perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should perhaps be purged.W
arning, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a
substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should pe
rhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replac
ing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution v
ariable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should perhaps be purge
d.Warning, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`,
 a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should
 perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, rep
lacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitutio
n variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should perhaps be pu
rged.Evaluation time: 0.45Error: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.01, size = 2411, normalized size = 6.33

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(5/2)/(e*x+d),x)

[Out]

9/64*d^4/e*a*c*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)*x-3/256/d*e^6*a^5/c^2*ln((1/2*a*e^2-1/2*c*d^2+(x+
d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)-15/256*d^7/e^2*a*c^2*ln
((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2
)+15/256*d*e^4*a^4/c*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/
e))^(1/2))/(c*d*e)^(1/2)-75/1024*e^4/c*d*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^
2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)*a^4-5/1024*e^8/c^3/d^3*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*
x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)*a^6+5/256*e^5/c^2/d^2*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*
x*a^4-5/64/e*c*d^4*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x*a-5/96*e^2/c/d*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^
(3/2)*x*a^2+15/512/e^2*c^2*d^7*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x
)^(1/2))/(c*d*e)^(1/2)*a+15/512*e^6/c^2/d*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e
^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)*a^5+5/512/e^4*c^2*d^7*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)+5/192*e/c*(c*d
*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a^2+5/192/e*d^2*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*a+1/12/c/d*(c*d*e*
x^2+a*d*e+(a*e^2+c*d^2)*x)^(5/2)*a+5/48*d*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*x*a-1/16*e*a^2/c*((x+d/e)^2*
c*d*e+(a*e^2-c*d^2)*(x+d/e))^(3/2)-5/192/e^3*c*d^4*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)+1/16*d^4/e^3*c*((x+
d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(3/2)-3/128*d^7/e^4*c^2*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)-1/8*
d*a*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(3/2)*x-5/192*e^3/c^2/d^2*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*
a^3-75/1024*c*d^5*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d
*e)^(1/2)*a^2+1/12/e^2*d*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(5/2)+1/6/e*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(5/2)
*x+5/256*d^3*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^2-1/5*d/e^2*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(5/
2)-15/512/e^2*c*d^5*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a-5/96/e^2*c*d^3*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)
^(3/2)*x+5/256*e^2/c*d*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^3-5/1024/e^4*c^3*d^9*ln((c*d*e*x+1/2*a*e^2+1/
2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)-5/64*e^3/c*(c*d*e*x^2+a*d*e+(a*e
^2+c*d^2)*x)^(1/2)*x*a^3+15/128*e*d^2*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x*a^2+25/256*e^2*d^3*ln((c*d*e*x
+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)*a^3+5/512*e^6/c^3/d
^3*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^5-15/512*e^4/c^2/d*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*a^4+5/
256/e^3*c^2*d^6*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x+3/64*e^3*a^3/c*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e
))^(1/2)*x+15/128*d^5*a^2*c*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d^2
)*(x+d/e))^(1/2))/(c*d*e)^(1/2)-3/64*d*e^2*a^3/c*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/8*d^3/e^2*c*(
(x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(3/2)*x-9/64*d^2*e*a^2*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)*x+
3/128/d*e^4*a^4/c^2*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)+3/64*d^5/e^2*a*c*((x+d/e)^2*c*d*e+(a*e^2-c*d
^2)*(x+d/e))^(1/2)-15/128*d^3*e^2*a^3*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a
*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)-3/64*d^6/e^3*c^2*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)*x+3/2
56*d^9/e^4*c^3*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1
/2))/(c*d*e)^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more details)Is a*e^2-c*d^2 zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{d+e\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2))/(d + e*x),x)

[Out]

int((x*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2))/(d + e*x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {5}{2}}}{d + e x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d),x)

[Out]

Integral(x*((d + e*x)*(a*e + c*d*x))**(5/2)/(d + e*x), x)

________________________________________________________________________________________